Response Suppression by Automatic Retrieval of Stimulus-Stop Association: Evidence from Transcranial Magnetic Stimulation
نویسندگان
چکیده
Behavioral studies show that subjects respond more slowly to stimuli to which they previously stopped. This response slowing could be explained by "automatic inhibition" (i.e., the reinstantiation of motor suppression when a stimulus retrieves a stop association). Here we tested this using TMS. In Experiment 1, participants were trained to go or no-go to stimuli. Then, in a test phase, we compared the corticospinal excitability for go stimuli that were previously associated with stopping (no-go_then_go) with go stimuli that were previously associated with going (go_then_go). Corticospinal excitability was reduced for no-go_then_go compared with go_then_go stimuli at a mere 100 msec poststimulus. Although these results fit with automatic inhibition, there was, surprisingly, no suppression for no-go_then_no-go stimuli, although this should occur. We speculated that automatic inhibition lies within a continuum between effortful top-down response inhibition and no inhibition at all. When the need for executive control and active response suppression disappears, so does the manifestation of automatic inhibition. Therefore, it should emerge during go/no-go learning and disappear as performance asymptotes. Consistent with this idea, in Experiment 2, we demonstrated reduced corticospinal excitability for no-go versus go trials most prominently in the midphase of training but it wears off as performance asymptotes. We thus provide neurophysiological evidence for an inhibition mechanism that is automatically reinstantiated when a stimulus retrieves a learned stopping episode, but only in an executive context in which active suppression is required. This demonstrates that automatic and top-down inhibition jointly contribute to goal-directed behavior.
منابع مشابه
MEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملDramatic Response of Resistant Obsessive Compulsive Disorder to Repeated Transcranial Magnetic Stimulation on Right Supplementary Motor Area
The response rate to the treatment of obsessive compulsive disorder (OCD) is 21.6% to 61.3%, which shows a relative resistance to current treatments and a need for novel therapeutic approaches. Here we report a case of resistant OCD with fast and dramatic response to a relatively new method of repeated transcranial magnetic stimulation. In this method a pulse magnetic field emits from a coil o...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملPrediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.
Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS. Materials and Methods: the spectral powers of different...
متن کاملElectronic Theses and Dissertations UC San Diego
Much research has focused on how people stop initiated response tendencies when instructed by a signal. Stopping of this kind appears to have global effects on the motor system. For example, by delivering Transcranial Magnetic Stimulation (TMS) over the leg area of primary motor cortex it is possible to detect suppression in the leg when the hand is being stopped (Badry R et al. 2009, Suppressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cognitive neuroscience
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2012